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The Stokes—-Boussinesg—Langevin equation, which describes the time evolution
of Brownian motion with the Alder-Wainwright effect, can be treated in the
framework of the theory of KMO-Langevin equations which describe the time
evolution of a real, stationary Gaussian process with 7-positivity (reflection
positivity) originating in axiomatic quantum field theory. After proving the fluc-
tuation-dissipation theorems for KMO-Langevin equations, we obtain an
explicit formula for the deviation from the classical Einstein relation that occurs
in the Stokes—Boussinesq—Langevin equation with a white noise as its random
force. We are interested in whether or not it can be measured experimentally.
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1. INTRODUCTION

About 15 years ago, Alder and Wainwright'*? discovered a long-time
tail behavior (ocs *?) of the velocity autocorrelation function for hard
spheres by a computer simulation. Since then, much effort has gone into
confirming such an Alder—Wainwright effect in both experiment and theory
on the basis of Kubos linear response theory in statistical
physics, (3-49:11.17:2627.3031) Tn  the course of these investigations, it has
become clear that the Brownian motion with the Alder-Wainwright effect
can be described by an equation treated by Stokes®® and Boussinesq ™’ in
hydrodynamics. Its equation with a random force reads

» dX(1)
dt

m

_ N A 1 dX(s)
—*—67U”UX([)'—67U' <?> Jiwm——d?—dé'—{* W([) (11)
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where m* is an effective mass given by
m* =m+ inr'p (1.2)

Here we consider the motion of a sphere of radius r and mass m moving
with an arbitrary velocity X(z) at time ¢ in a fluid with viscosity # and den-
sity p subject to a random force W(¢) at time .

On the other hand, we know!"?” that the time evolution of the

Ornstein—Uhlenbeck Brownian motion as treated by FEinstein® and
Langevin'!® reads
X(¢t o
m W 6 x(0) + [2kT(67m)] Y2 B(r) (13)

where k is the Boltzmann constant, T is the temperature of the fluid, and B
is a Gaussian white noise, that is, the time derivative of a standard Brow-
nian motion B. It is known!"?* that the Ornstein~Uhlenbeck Brownian
motion can be characterized as a stationary Gaussian process with
Markovian property.

We raise the following questions:

1. What kind of qualitative nature does the solution of Eq. (1.1)
have?

2. Conversely, can a stochastic process with such a qualitative nature
be governed by Eq. (1.1)?

For that purpose, we have to clarify the true character of the random force
W in Eq. (1.1) from the viewpoint of the theory of stochastic processes.

In a series of papers®! " we have tried to characterize the class of
stochastic differential equations describing the time evolution of stationary
Gaussian processes with T-positivity. In Ref. 24 we obtained two kinds of
equations, called the first KM O-Langevin equation and the second KMO-
Langevin equation. The former was derived from the structure theorem of
the outer function and in consequence it has a white noise as a random
force, which gives a generalization and a refinement of the [a, f,7]-
Langevin equation in Refs. 22 and 23. The latter was derived from the
structure theorem of the Laplace—Fourier transform of the correlation
function, and then the random force in it is in general colored, which we
called the Kubo noise with its physical origin in Kubo’s linear response
theory in statistical physics.!'? %)

Our motivation in these investigations was to clarify the mathematical
structure of the fluctuation-dissipation theorem in Kubo’s linear response
theory in statistical physics with the desire for application from mathemtics
to physics.

In the first part of this paper, we will show in Sections 2 and 3 a
generalized fluctuation-dissipation theorem on the basis of the first KMO-
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Langevin equation, which gives a generalization and a refinement of the
results in Refs. 22 and 23. We further show in Section 4 Kubo's fluctuation-
dissipation theorem on the basis of the second KMO-Langevin equation.
The physical meaning and significance of the fluctuation-dissipation
theorems will be given in Section 2.

As a consequence, we will find (Theorems 2.1, 3.1, and 4.1) that a fun-
damental difference between two kinds of fluctuation-dissipation theorems
stated above lies in the fact that the classical Einstein relation holds on the
basis of the second KMO-Langevin equation, but does not hold on the
basis of the first KMO-Langevin equation. Its degree of deviation from the
Einstein relation can be calculated. We note that the description of the fluc-
tuation-dissipation theorem should be given on the basis of the equation
that describes the time evolution of the process under consideration,
because under additional conditions we can rewrite the first (resp. second)
KMO-Langevin equation into the second (resp. first) KMO-Langevin
equation by way of a change of the coefficients in the equations.

In the last part of this paper, we will find in Sections 5 and 6 that the
correlation function Ry in the investigations of Hauge and Martin-Lof""
and Kubo,"”” whose object is to confirm the Alder-Wainwright effect, has
a qualitative nature of T-positivity. We then see from Section 4 that Ry is
realized as the autocorrelation function of the unique stationary solution
Xy for the Stokes—Boussinesq—Langevin equation (1.1) where the random
force W is Kubo noise, as a concrete example of the second KMO-
Langevin equation. We note that Ry cannot be realized as an
autocorrelation function of the stationary solution for some first KMO-
Langevin equation.

We know®* that the white noise plays the same role that the Kubo
noise does as a random force in the derivation of KMO-Langevin
equations. We will find in Section 7 that the autocorrelation function R, of
the unique stationary solution X, for the Stokes-Boussinesq—Langevin
equation (1.1) with the white noise o, B as random force has the same
qualitative nature of T-positivity as Ry, where o, is a positive constant.
We note that X, can be a unique stationary solution for some second
KMO-Langevin equation whose systematic part is different from the one in
equation (1.1). Furthermore, we will show that R, satisfies the Alder—
Wainwright effect, similarly as Rg:

. ) R (0
Jim (o) Ritt) =22 (14

: 32 «\/%RW(O) © 1 \/; -
lim (B )" Rus(1) = i)
(15)

el 2
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where
Bsp = 6mry/m* (1.6)
a=(6nr’p/m*)"? (1.7)
By applying the FEinstein relation in Section4 and the generalized

Einstein relation in Section 2 to Xy and X, we will obtain in Sections 6
and 7 the following results:

_ Rg(0)

D,=*2>"7 1.8

K BSB ( )
RW(O>< [& (14 y+ay) 'T(1— ) +a’] ‘d,v)

D, = 14+ 1.9

" B AT vtady) -3 rav]dy )

where Dy and D, are the diffusion constants of X and X, respectively,
defined by

DK:J: Re(1) dt (1.10)
DW:J” Ry(1) dt (1.11)
0

We note that Dy and D, are concretely obtained as follows:
Dy =1/3(2n)"m (1.12)
Dy = 3(otp/6rn)? (1.13)

In Section 8 we will investigate the lim ¢ — 0 behavior of the deviation
from the Einstein relation in (1.9) and the processes Xx and X,,. We note
that for a fixed 5 the lim a —» 0 behavior is equivalent to the lim p —0
behavior by (1.2) and (1.7). We will show that

lim DW(RW(O)yl:l (1.14)
a0 Bss
and under the condition
ay = (12./2n*2ry)'? (1.15)
we have
jiE)XK:(}iI%XW:XOO (1.16)
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where X is the Ornstein—Uhlenbeck Brownian motion whose time
evolution is governed by Eq. (1.3) for the case where k7= (2n)"%. We note
that under the condition (1.15), Dy and D, coincide with the diffusion
constant of X . Furthermore, we will show the following interesting limit
theorem under the condition (1.15):

lim <!lirr; RZ((;D:z (1.17)
e RN
Jim <l‘f’o RK(1)>‘1 (1.18)

In closing this section we are interested in whether the deviation from
the Einstein relation in {1.9) that occurs in the case where the random force
W in the Stokes—Boussinesq—Langevin equation (1.1) is a white noise can
be measured experimentally. In a forthcoming paper*®’ we will find that for
the discrete time series the Einstein relation deviates from the one in the
Markovian case not only on the basis of the first KMO-Langevin equation,
but also on the basis of the second KMO-Langevin equation. Therefore, it
seems that such a criterion as entropy is needed, besides the Einstein
relation, in order to determine which of the white noise and the Kubo noise
is adequate as the random force in the KMO-Langevin equation under the
condition that its systematic part is given for modeling. The entropy
criterion will be discussed in Ref. 25.

2. A GENERALIZED FLUCTUATION-DISSIPATION THEOREM. 1

Let X = (X(¢); reR) be a real, stationary Gaussian process with mean
zero and covariance function R of the form

R(r):JMe " o(di)  (1eR) (2.1)

0
where ¢ 1s a Borel measure on [0, o) satisfying the following condition:
6({0})=0 and 0<o([0, o))< (2.2)

By Theorem 2.1 in Ref 21, we know that R has a spectral density 4 of
Hardy type such that

R(z):jke”'f AE)dE (teR) (2.3)
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e
A= | mpodn)  (EeR—{0}) (24)
log 4(8) _ .,
e e L'(R) (2.5)

Then we can obtain an outer function / and a canonical representation
kernel E with a one-dimensional Brownian motion (B(¢); 1€ R) having the
properties (H.1)-(H.4), (E.1)-(E.4), (B.1), and (B.2} in Ref. 24.

In this section, we shall treat the case where the following conditions
are satisfied:

jw 2" o(dA) < o (2.6)

x

j Ce(d)) < oo (2.7)

0

By Theorems 2.2 and 3.1 in Ref. 24, we obtain first KMO-Langevin data
(a, B, p) € & associated with ¢ such that for any (e C*

M) =~ Gy =TT TV DT 7 28
We recall that («, §, p) € &, means that
>0 and f>0 (2.9)
p is a Borel measure on [0, co) with p({0})=0
(2.10)

oo 1 i
and L T pldi)< oo

Furthermore, we know from Theorem 4.1 in Ref 24 that the time evolution
of the process X is governed by the following first KMO-Langevin equation:

X=—fX—limy,* X +aB (2.11)
elo

where for each ¢ >0, v, is a function on R defined by

1) =YioD) | €7 pld2) (2.12)

We note that Eq. (2.11) holds in the sense of random tempered dis-
tributions. Then we shall show the following:
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Theorem 2.1.:
(1) Forany {eC*u(R—{0}),

1 B (L)
B—il—illim, o [& e y,(t)dt  [g Reh(E+i0)dE

(i)  «¥2=R(0)Cy,

where Cy, is a positive constant defined by

- -2 —1
Cﬂ,,:n{j ‘ﬁ—ii[1+lim [ e"é’yﬁ(l)dt} dé} (2.13)
! R ¢l0 Yo
(iii) D=2
where D is a positive constant defined by
D:JWR(t)dz (2.14)
0
. R(0) Cy
(iv) D=——+—"2H
BB

« R
W Cu—t=] T

Proof. By (E.2) and Lemma 2.7 in Ref. 24, we have

~

az(Z/n)”zJ Re (& +i0) dé (2.15)

which together with (2.8) yields (i). Similar to (9.13) in Ref 22, we get (ii)
from (H.4) in Ref. 24 and (2.8). Since

D:r 2V o(di) (2.16)
4]

then (iii) follows from formulas (i) and (ii) in Theorem 3.3 in Ref. 24. From
(i1) and (iii), we immediately have (iv). Part (v) can be shown as follows.
First, we claim that for any >0,

E(1) = (2n)"a —ﬁf E(s)ds— (y * E)1) (2.17)
[V}
where y is a function on R defined by

0= Hoal0) | % pld2) (2.18)
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By Lemma 4.3 in Ref. 24, which is equivalent to Eq. (2.11), we have
X(1) — X(0) = a(B(1) — B(O))AJO[ X(s) ds
‘ljf‘(}[(“/e * X)(1)— (y.* XN0)]

for any r>0. By multiplying both sides by B(r)— B(0) and then noting
(B.1), (B.2), Lemma 2.8(iv), and (4.11) in Ref. 24,

s

L E(s) ds = (2) et — B J UO E(u) du] ds _j’ (3 E)s) ds

and then by differentiating both sides with respect to ¢, we have (2.17).
Next we claim that for any 7> 0,

2 ~

R(t)=;—ﬁ4ﬁj

By (E.4) in Ref. 24 and (2.17), we have, for any >0,

/R(s)ds-r R(1—s)9(s) ds (2.19)

0 0

R(t) = — ZJ”: E(s)ds—%f UJ E(u)du} E(s) ds

Furthermore, we can see from (E.4) and Theorem 2.1(1ii) in Ref. 24,
part (iii) of Theorem 2.1 in this paper, and (2.16) that for any >0,

27Z J0

1 o[ pr+s o2 r
E =— ‘) d
jo UO E(u)du] (s) ds 2ﬁ2+[1e(5)ds
Therefore, we get

2 1 1 o
R(t):;—ﬁ-ﬁ J, Risyds =5 [ " (% E)0 +5) E(s) ds

Since by (E.4) in Ref. 24 we have, for any >0,

1 o0 x
2—nj0 (y*E)(t+s)E(s)ds:L R(i—s5) y(s) ds

we can obtain (2.19).
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Finally, we separate

N R(z—s)y(s)dsﬂ" R(t=s)3(s)ds+ | R(t—5)y(s) ds
—1(1) +T1(7)

By Lemma 2.8(iv) in Ref. 24,
lim [(r)=0

10

By the monotone convergence theorem,

lim T1(1) = | " R(s) 9(s) ds

110
Therefore, we see from (2.19) that

R<0>=%— j; R(s) y(s) ds

By combining it with (iv) in Theorem 2.1, we have (v). 1}
For future use, we arrange (2.17) and (2.19) into the following:
Corollary 21. For any >0,

~t

(i) E(0)=0Qn)"~p| Es)ds—(y*E)N1)

0

12 nl o~
R(s)ds~J R(t—5)y(s) ds

(i1) R(t)=ﬁ~ A .

By taking the same argument as Theorem 9.1 in Ref. 21 and then using
Theorem 2.1(v), we have

Theorem 2.2:

(i) Cp/p=1

(ii) The following five statements are equivalent:
(a) Cy,/B=1

(b) y=0.

(c) p=0.

(dy R=cFEin (0, c0) with a positive constant c.
(e) X has a simple Markovian property.
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Before stating the physical meaning of Theorem 2.1, we give the
following example:

Example 2.1. Let X=(X(¢); teR) be an Ornstein—Uhlenbeck
Brownian motion whose time evolution is governed by the [«, f,0]-
Langevin equation‘”??

X=—BX+aB (2.20)

where « and f are positive constants and (B(¢); € R) is a one-dimensional
Brownian motion. Then it can be seen that the covariance function R, ,
outer function 4,4, canonical representation kernel E, 4, and positive con-
stants Cy and D, ;, which are defined by (2.13) and (2.14), are given by

5

R%,,(r):;l;,e*/”" (teR) (221)
h (=t feCt 2.22
a./f((f)—zm (CeC™) (2.22)
E, 1) =110. (N20) 2 ¥ (1€R) (2.23)
C/f.O = ﬂ (2-24)
D, = o2 (2.25)
In particular, we have
Ropl) =55z Eual) - 10, )] (226)

which corresponds to (d) in Theorem 2.2(ii). Therefore, we can rewrite
relation (i) in Theorem 2.1 as

r1
B—il R,40)

From (2.21) and (2.25), we immediately obtain

j: eV Ry dt [(eCTUR—{0})] (227)

a?2= R, 5(0)B (2.28)
D,;=R,40)/8 (2.29)

which corresponds to (ii) and (iv) in Theorem 2.1 together with (2.24),
respectively.

Concerning the physical meaning of Theorem 2.1, we give three
remarks.
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Remark 2.1. The left-hand side in relation (i) in Theorem 2.1
[resp. relation (2.27)] denotes the complex mobility of the system X
described by Eq. (2.11) [resp. Eq. (2.20)], which represents the response of
the system described by Eq. (2.11) [resp. Eqg. (2.20)] to the external force.
On the other hand, the right-hand side in relation (i) in Theorem 2.1 [resp.
relation (2.27)] is determined by the outer function (resp. covariance
function) of the system X and so the spectral measure of X, which
represents the thermal fluctuation of the system X in equilibrium without
the external force.

Furthermore, the left-hand side in relation (ii) in Theorem 2.1 [resp.
relation (2.28)7 denotes the fluctuation power of the random force aB in
Eq. (2.11) [resp. Eq.(2.20)]. On the other hand, the right-hand side in
relation (ii) in Theorem 2.1 [resp. relation (2.28)] is determined by the
positive constants R(0) and C,,, [resp. R(0) and f]. The positive constant
Cy, (resp. fB) is determined by the drift coefficient representing the
systematic part of Eq. (2.11) [resp. Eq. (2.20)]. It is physically allowable
for us to regard the positive constant R(0) as the absolute constant k7T in
equilibrium described by Eq. (2.11) [resp. Eq.(2.20)], where k& and T
denote the Boltzmann constant and absolute temperature, respectively.

The relation (2.29) was first discovered by Nyquist,”®® who showed
that the random electromotive force appearing across a resistor is deter-
mined by its impedance. In this case, the response to external force is
represented by the dissipation of the energy.

In order to distinguish two kinds of representations that relate, for a
system in thermal equilibrium, two physically distinct quantities of fun-
damental experimental significance—the fluctuation behavior and the dis-
sipative behavior"”—Kubo"* '% called relations (2.27) and (2.28) the first
Jluctuation-dissipation theorem and the second fluctuation-dissipation
theorem, respectively. By taking this into account, we call relations (i) and
(ii) in Theorem 2.1 the generalized first fluctuation-dissipation theorem and
the generalized second fluctuation-dissipation theorem, respectively. Further-
more, we call the positive constant C, the generalized friction constant.

Remark 2.2. We note''* '® that the positive constant D defined by
(2.14) is transformed as

I 2

D= lim E([f3 X(s) ds]?)

Jim 3 (2.30)

This is called the diffusion constant or the fluctuation power of X. Relation
(2.29), which indicates that the diffusion constant D is inversely propor-
tional to the friction coefficient f in Eq. (2.20), is called the Einstein
relation.*'* ' Further,"* ') the Einstein relation (2.29) corresponds to a
special case of the first fluctuation-dissipation theorem (2.27).
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However, we find from relation (iv) in Theorem 2.1 that there occurs
in the system described by Eq. (2.11) a deviation from the Einstein relation
(2.29) for the system described by Eq. (2.20), with the degree of deviation
calculated by formula (v) in Theorem 2.1. Furthermore, we will find in Sec-
tion 7 that the degree of deviation from the Einstein relation can be con-
cretely parametrized for the Stokes—Boussinesq-Langevin equation with
white noise as the random foce, which gives a concrete and physical exam-
ple of the first KMO-Langevin equation (2.11). For this reason, we call
relation (iv) the generalized Einstein relation.

Remark 2.3. We note that relation (iii) in Theorem 2.1 for the
system described by Eq. (2.11) is the same as relation (2.25) for the system
described by Eq. (2.20).

3. A GENERALIZED FLUCTUATION-DISSIPATION THEOREM. 2

In this section, we treat the case where the measure ¢ in (2.1) satisfies
the following conditions:

o

J 2 e(di) < oo (3.1)
0

x

j Cio(di)= 0 (3.2)

0

Corresponding to (2.8), by Theorems 5.2 and 6.1 in Ref. 24, we obtain the
first KMO-Langevin data (f, p) e &, associated with ¢ such that for any
{eC?

1 1
(27)'2 B =il g [1/(A—i)] p(d2)

Furthermore, we know from Proposition 7.1 in Ref. 24 that relation (3.3)
implies that X satisfies, in the sense of random tempered distributions,

() = (3.3)

—BX —limy,*X+B=0 (3.4)
ERRY]
Similar to (2.13), we define the generalized friction constant C, by
o -2 —t
C;ﬁ:):n[] ’ﬁ—ié limj e yﬁ(t)dt’ de (3.5)
! R el0 Yo

and the diffussion constant D by (2.14). Corresponding to (ii)—(v) in
Theorem 2.1, we shall show the following:
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Proposition 3.1:
(i)  3=RO)Cf,
(i) D=1/28"

(iii) D:%%
. Ci‘fy_ © R(t)
(iv) 7%<L—@me

Proof. Similar to (ii) in Theorem 2.1, we have (i) from (H4) in
Ref. 24 and (3.3). By noting (2.16), we have (ii) from formula (i) in
Theorem 6.3 in Ref. 24. Part (iii) follows immediately from (i) and (ii). For
the proof of (iv), we claim that for almost all >0,

—B JO E(s) ds— (y x E)(1) + (2m)2 =0 (3.6)
! o 1
B L R(s) ds + fo R(15) 7(5) ds =57 (3.7)

By noting that Ee L' n L2 and then using Eq. (3.4), we find that (3.6) can

loc

be proved similarly as (2.17). We note that (3.6) implies, for any >0,

oz

(2m)1? J” E(s)ds=f j " E(s) U+ " E(u) du} ds

0 0

+ [T ES) G B)s+ 1) ds

0

Furthermore, since it folows from Lemma 5.2(iv) and Theorem 5.1(iv) in
Ref. 24 and (ii) that

[ Bts) ds = (2m)2/p

0

we find that (3.7) can be proved similarly as (2.19). In particular, we see
from (3.7) that

Jijwwmzum

which together with (i) gives (v). |
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Since we cannot regard Eq. (3.4) as an equation describing the time
evolution of X, it is not clear how (3.3), (i), and (iii) in Proposition 3.1 give
the generalized first fluctuation-dissipation theorem, generalized second
fluctuation-dissipation theorem, and generalized Einstein relation, respec-
tively, on the basis of Eq.(3.4). In order to derive an equation that
describes the time evolution of X, we used in Ref. 24 the following con-
dition:

jw 172 6(dA) < o (3.8)
O

We know from Theorem 7.1 in Rel. 24 that Eq. (3.4) can be rewritten as the
following first KMO-Langevin equation:

X:—EX+1(Q>5X)+11'3 (3.9)
qg q q

where g and Q are a positive constant and a bounded measurable function
on R, respectively, defined by

q=fwy(s)ds (3.10)
0

Q)= g0 (1) | 7(s) d (3.11)

Finally, we shall show how (3.3), (i), (iii), and (iv) in Proposition 3.1
give the generalized first fluctuation-dissipation theorem, generalized
second fluctuation-dissipation theorem, generalized Einstein relation, and
deviation from the Einstein relation, respectively, on the basis of Eq. (3.9).

Theorem 3.1.:

(i) Forany {eC™*
[§+(—i()+(—ic)2j°° efé“f%dz]
q q

_ |:1im h(ie) "' — ="' [ R() dt]‘l] ho)

el0 &
1 2
6 o),
_(1)g)?

W) D=5 ey
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R(O) Cl(;;q,v/q

. p_ RO
() Ba Bla
Ccz,. 1 o=/ R(t))

4 1 L - l——— d
) b= awwid, @) 10«
Proof. By (3.10) and (3.11), we can rewrite (3.3) as

1
W) =24

(21)'? Blg + (—i0) + (=) [§ ™ Q1) d

for any { e C*. On the other hand, it follows from (2.14), (3.3), Proposition
3.1(ii), and (3.10) that

(g i M) L i Ry ]
q el0 &

and so we have (i). Since Cj, defined by (3.5) satisfies
Chlaia= ? Chy (3.12)

we see that (i) follows immediately from Proposition 3.1(i). Similarly,
Proposition 3.1(ii) and Proposition 3.1(iii) with (3.12) give (iii) and (iv),
respectively. Since

1

o
Cﬁ/w/q — oo

Bla  Blg "7

we find that (v) follows from Proposition 3.1(iv) and (3.10). §

Remark 3.1. Since (i), (ii), and (v) in Theorem 3.1 play the same
role for Eq. (3.11) as (i), (i), and (iv) in Theorem 2.1 do for Eq. (2.11), it is
reasonable for us to call (i), (ii), and (iv) in Theorem 3.1 the generalized
first fluctuation-dissipation theorem, the generalized second fluctuation-dis-
sipation theorem, and the generalized Einstein relation, respectively.

Remark 3.2. We note that (v) in Theorem 3.1 implies that the
degree of deviation from the Einstein relation is less than 1, different from
(v) in Theorem 2.1, which implies that it is greater than or equal to 1.

Remark 3.3. Since we treat the case where condition (3.2) is
satisfied, we find that X has no Markovian property and so the generalized
friction constant C§, cannot give such a characterization of Markovian
property for X as Theorem 2.2(ii).

822/45/5-6-13
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4. KUBO’S FLUCTUATION-DISSIPATION THEOREM

In this section, we treat the case where the measure ¢ in (2.1) satisfies
condition (2.6), but does not necessarily satisfy condition (2.7):

|2 o) < oo (4.1)
Y0
Together with the first KMO-Langevin data («, 8, p) in (2.8) or (f, p) in
(3.3), by Theorems 8.1 and 8.5 in Ref 24, we have the second KMO-
Langevin data (o, By, po) € £, associated with ¢ such that for any (e C*
1 —1

_2;[ e R(1)dt = 2 )1/2[50 if— ZCJ [1/(A iC)]pO(a’/l)] (4.2)

We have found® that it is impossible to derive an equation with
white noise as a random force that describes the time evolution of X. For
this reason, we have in Ref 24 introduced the colored noise 1= (I(¢);
¢ € F(R)), which is called the Kubo noise, as a stationary random tempered
distribution:

L
19)=[ (16) a8 (43)

where h, is an L*function on R defined by

hy= (J((o,ao)R)~ (4.4)

By Theorem 8.3 in Ref. 24, we have the following representation with the
causal property:

J X0 gty a 1) | ROIGE vy d [hes R (45)

2
Fx)=F (1) (teR) (4.6)

which gives a mathematical justification of the random force in Kubo’s
linear response theory."*'®) By using (4.2) and (4.3), we know from
Theorem 8.4 in Ref. 24 that the time evolution of X, in the sense of random
tempered distributions, can be governed by the following second KMO-
Langevin equation:

X= —f,X—1imj,, * X + o1 4.7)
el0
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where for any ¢ >0, y,, and y, are functions on R defined by

YoulD) = Koml®) | € plds) (48)

Yo="700 (4.9)

We further define the tempered distribution R, by

~

R, (¢)=JR ¢(1)sgn(z) yo(r) dr - [¢e S (R)] (4.10)

Ty
Then, corresponding to Theorem 2.1 or Theorem 3.1, we show the
following:
Theorem 4.1:
(i) Forany (eC~™

[ﬁo—fc~z¢11m o] =t [ R ()
el 0 |
R(0 o &
i) () =52 ot [ izpo(dﬂ)} &
_RO) e [/30 —iglim | e (1) dt} dc
s £l0 Yo
) Re="ipse k)

where 4y and Ry, are the spectral measure and the covariance distribution
of the random tempered distribution W = a,1.

(i) D= R(0)/f,
Proof. We recall formula (i) in Theorem 8.2 in Ref. 24:
%o = R(0)/(2m)"? (4.11)

Equation (4.2) together with (4.11) gives (i). Part (ii) follows from
Propositons 8.1(iii) and (iv) in Ref. 24. Finally, (iii) follows from formula
(i1) in Theorem 8.2 in Ref. 24. |}

Remark 4.1. By using (4.11), we find that (i) and (i) in
Theorem 8.1 correspond to the first fluctuation-dissipation theorem and the
second fluctuation-dissipation theorem, respectively, in the sense of
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Remark 2.1. Furthermore, (iii) is the Einstein relation. We call (1)-(iii) in
Theorem 4.1 Kubo’s fluctuation-dissipation theorem.

Remark 4.2. By (iii) in Theorem 4.1 and (4.11), we obtain
D = (2n)Yuay/B, (4.12)

which implies that relation (2.25) for the system described by Eqg. (2.20)
does not hold for the system described by the second KMO-Langevin
equation (4.7), in contrast to relation (i) in Theorem 2.1 [resp. relation
(i1i) in Theorem 3.1] for the system described by the first KMO-Langevin
equation (2.11) [resp. the first KMO-Langevin equation (3.9)].

Remark 4.3. However, we find from formulas (i) and (ii) in
Theorem 3.3 in Ref. 24 and the reasoning in the proof of Theorem 8.2 in
Ref. 24 that

a3/2B5 =Dy, (4.13)

where the positive constant D, is the diffusion constant of the stationary
Gaussian process X, with the covariance function R, given by

1 ©

Ro(z):—j R(f| +5) R(s)ds  (teR) (4.14)
271? 0

5. STOKES-BOUSSINESQ-LANGEVIN EQUATION

We shall counsider the motion of a sphere of radius r and mass m
moving with an arbitrary velocity X(¢) at time 7 in a fluid with viscosity #
and density p. Denoting by W= (W(z); te R) and F= (F(t); t € R) the fluc-
tuating force and drag force acting on the sphere, respectively, we see that
Newton’s equation becomes

m dX(1)/dt = —F(t)+ W(t) inR (5.1)
By taking the inverse Fourier transform of both sides of Eq. (5.1), we find
m(—i&) X(&)= —F(&)+W() iR (5.2)

and so for fixed almost all £eR— {0}

m% [e “X(&)]= —e “F&)+e “W(&) inR (5.3)

Equation (5.3) represents the time evolution of the motion of a sphere of
radius r and mass m vibrating with frequency ¢ in such a situation that the



Brownian Motion with Alder-Wainwright Effect 971

velocity, fluctuating force, and drag force at time 7 are given by e~ "X(&),
e CW(¢), and e "F(¢), respectively. By solving a linearized
Navier-Stokes equation subject to imcompressibility and stick boundary
conditions in hydrodynamics, Stokes®®) showed that the drag force for
Eq. (5.3) is given by

12
e~ "CF(&) = 6mry [1 +r <é8> }e"’fj’(é)
2n

1/2 172
e )15 8] T r

(&)= {(67'm7 + 3nr?2pn&)

and so

+[3nr2(2pn)”2ﬁ+27;r p] (—if)} X(¢) (5.4)

By taking the Fourier transform of both sides of Eq. (5.4), Boussinesq‘*®'®

has shown that the drag force F for Eq. (5.1) is given by

1dx(1) 3
S Ty
37ar W

309\ 1 dX(s)
+r<p—n> J,X(,_S)m ds dSJ

Therefore we find that Eq. (5.1) can be rewritten as

pn\'"2 1 dX(s)
~ 6 X(1) - 6mr? <??> LC T S DRCE)

F(t):2npr3|:

. aX(1)
dt

m

where m* is the effective mass given by
m*=m+ inr’p (5.6)

Definition 5.1. We call Eq. (5.5) the Stokes—Boussinesq—Langevin
equation.

From the viewpoint of the theory of stochastic differential equations, it
seems necessary to pay attention to the second term on the right-hand side
of Eq. (5.5), because it is a sort of singular integral. For this reason, we
return to (5.4) and then substitute it into (5.2) to obtain

X(&)=102n)"" hs(£)] W(&) (5.7)
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where /¢ is the frequency response function on C*“(R — {0}) defined by

1 1
h = 5.
SO = Gy G+ (0 1 6 () D)7 )
where for any complex (e C— {zeC; Rez<0, Imz=0} (—i{)"? stands
for exp i(log|{| +i Arg{) (—-m < Arg{ < n).
By using the formula
© ] 1 . n o +
fo )v—-vlzmdlu——(—_w for any QEC (59)
we find that the function /g in (5.8) can be rewritten as
dsp 1
hs(()= (5.10)

(2m)"? Bsg — il —iC {5 [1/(A—iC)] psp(dA)

where agy and fgg are positive constants and pgg a Borel measure on
[0, c0) given by

ngp = fm* (5.11)

Psp = 6mry/m* (5.12)

erem) 1
pSB(dA)z—%)—F/—zd/v (5.13)

By applying Theorems 3.1 and 8.5 in Ref. 24 tp the triple (osp, fsg, Psp)s
we obtain two Borel measures ogy and vgg on [0, 00) such that

osp =L '((asg, Psg: Pss)) (5.14)
vsp =Ly '({osp, Psgs Psp)) (5.15)

In fact, it follows from Theorem 2.1 and Lemma 2.6 in Ref. 24 that

1 o 1
codn) =5z | [ 7 vseldi) | vata) (516)
Es(1)=hs(1)=1g0.0(1) | ¢ vsnldd) (5.17)

The concrete form of the measure vgy in (5.15) and (5.17) is obtained
mm Refs. 11 and 17:

}1/2

172
dA)={— di 5.18
vsp(d4) (n) Asp€sp (ﬂsB—i)2+€§Bi ( )
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where eg is a positive constant defined by
esp = 6mr(pn)'*/m (5.19)

Furthermore, we see from (5.9), (5.10), (5.17), and (5.18) that the measure
ogp in (5.14) and (5.16) can be represented by

o2 e VA
ogp(dl)="2 B - di (5.20)
R Ny S ) B

We note that

jw Jﬁzas]a(dz)zjw 2 2vgp(dh) = o0 (5.21)
4] 0
f (1427 asﬁ(di)+f°o (1441 vep(di) < o0 (5.22)
0 0
Jm Iven(di) = oo (5.23)
0
F osn(dl) < oo (5.24)
4]
j Pogu(dl) =0 (5.25)
0

6. THE SECOND STOKES-BOUSSINESQ-LANGEVIN
EQUATION

In this section we consider the nonnegative-definite function Ry on R
defined by

Ry (1) zf e MWy (d)) (6.1)

where vgp 1s the Borel measure on [0, o0) in (5.18). Let Xi = (Xk(¢); teR)
be a real, stationary Gaussian process on a probability space (2, %, P)
with mean zero and Ry its correlation function, and with Ay the outer
function of Ry [see (H.1) in Ref. 24].

In order to derive an equation that describes the time evolution of Xy,
we use the Kubo noise I = (I(¢); ¢ € ¥(R)), which was defined by (4.3) as a
stationary random tempered distribution:

B A\~
1(¢)(w):jR <h—c¢) (1) dB(1, »),  as o (6.2)
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where (B(t); teR) is a one-dimensional Brownian motion. Since (5.15)
implies that the triple (xgg, Bsp. Psp) represents the second KMO-
Langevin data associated with vgg having condition (5.22), we know from
(4.7) that the time evolution of Xy is governed by the following second
KMO-Langevin equation:

Xk = —Bsp Xk — liflg YsB.e * Xk +agpl (6.3)

in the sense of random tempered distributions, where for each >0, ygp, is
a function defined on R by

Ysnd)=Ziowlt) | € Ppsald?) (64)

&

We have

2
1
z)m—— forany teR (6.5)
m* t

N

We find that the second KMO-Langevin equation (6.3) gives a realization
for the Stokes—Boussinesq—Langevin equation (5.5) that is characterized by
a qualitative nature of T-positivity. However, we find from the results of
Section 7 in Ref. 24 that the time evolution of X cannot be described by
the first KMO-Langevin equation which has white noise as the random
force, because of conditions (5.21) and (5.23). We call Eq. (6.3) the second
Stokes—Boussinesq—Langevin equation. From Theorem 4.1(iit), we have the
Einstein relation:

lim ysp..(£) = X (0,00)(
£l0

DK=RK(0)/ﬁSB (6-6)

where Dy is the diffusion constant of Xy, given by

DKzf Ry (1) dt (6.7)

0

Furthermore, it follows from (4.11) and (6.3) that
Rx(0) = (2m)asy (6.8)
and so

I 1

T3 2
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Concerning the long-time tail behavior of the correlation function Ry,
we know from Refs. 11 and 17 that the following Alder—Wainwright effect
holds:

Rk (0)

li 1)*? Ry ()= 6.10
ILHC}O(,BSB ) k(1) 2ﬁ a ( )
where a is a positive constant defined by
a=esp/Bs5 (6.11)
From (5.6), (5.11), (5.12), (6.8), and (6.11), we have
6nr’p 12
= —t 6.12
“ [m+ (2/3)1tr3p} (6.12)
R (0) 3nrip
= 6.13
N AT 4

7. THE FIRST STOKES-BOUSSINESQ-LANGEVIN EQUATION

In this section we consider the nonnegative-definite function R, on R
defined by

Ri(t) =iy [~ e Wog(di) (7.1)

where oy, is a fixed positive constant and ogg is the Borel measure on
[0, 0) in (5.20). Let X, =(X,(¢); teR) be a real, stationary Gaussian
process with mean zero and R, as its correlation function, and with 4, the
outer function of R, [see {(H.1) in Ref 24]. Then we note that the
realization of X, can be given by

1
XW(z)zij E,(t—s) dB(s) (72)

where EW:ﬁW and (B(t); teR) is the one-dimensional Brownian motion
in (6.2). Furthermore, we find from (5.14)-(5.17) that

hy=ayhsg (7.3)
Ey=u,Es (7.4)

Since (5.14) implies that the triple (xy-055, Bsp, Psg) represents the first
KMO-Langevin data associated with «, 045 satisfying conditions (5.22)
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and (5.24), we know from (2.11) that the time evolution of X, is governed
by the following first KM O-Langevin equation:

Xy= —_ﬂSBXW_liP(} ySB,s*XW+aW“SBB (7.5)

in the sense of random tempered distributions.

As with the second Stokes-Boussinesq—Langevin equation (6.3), we
find that Eq. (7.5) gives the realization for the Stokes-Boussinesq-Langevin
equation (5.5), which is also characterized by a qualitative nature of T-
positivity. Though the time evolution of X can be described by a second
KMO-Langevin equation having a Kubo noise as a random force, the
coefficients in the systematic part of its equation become different from
those in the systematic part of the Stokes—Boussinesg—Langevin equation
(5.5), as we have seen in Sections 2-4. We call Eq. (7.5) the first Stokes—
Boussinesg—ILangevin equation.

From (ii) and (iv) in Theorem 2.1, we have the following generalized
second fluctuation-dissipation theorem and generalized Einstein relation,
respectively: ,

o) R,y(0)Csn (76)

_Ry0) Csp

ﬁSB ﬁSB

where Cgg is the generalized friction constant in the systematic part of the

first Stokes—Boussinesq—Langevin equation (7.5) and D, is the diffusion
constant of X :

1
CSB=n{L\ﬁSB‘ié[l+€SB(‘ié)l/z]|_2 dﬁ} (7.8)

Dy (7.7)

oL

Dy=[" Rylt)di (7.9)
0

We shall now investigate the value Cgp/fgg in relation (7.7), which
gives the degree of deviation from the Einstein relation. By (5.20) and (7.1),
we get

(f"WOCSB)za3 *® 1 \/_J;
R,(0)= d 7.10
" esn Jo [+ ytasy(—pPtay® 710)

which, together with the generalized Einstein relation (7.6), gives

Co -”—UOO ! V2 dy]1 (7.11)

Bse 2al l+y+a/y(d=y)+a’y
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Furthermore, it follows from (5.9), (5.20), and formula (v) in Theorem 2.1
that

CSB_ _ (aposp)’a® o 1 1 dy

Bse R(0) Bspess J0 1+ y+a\/; (1—y)+a%y
and so by (7.10)

Csn fe(+y+a/y)! Y +a’y] " dy

5B =g

Bss e 1+y+a\/— f/[l— )2 +a’y]dy

Next, we show that the Alder-Wainwright effect also holds for the
correlation function R,,. Since by (5.16), (5.17), (6.1), (7.1), and (7.4)

(7.12)

2

RW(z):%f Ry(t+5) Rg(s)ds forany (>0

we see from the bounded convergence theorem, (6.6}, (6.8), and the Alder—
Wainwright effect (6.10) for the correlation function Ry that

: 32 O‘WR (0)
llirrl(ﬁSB[) Rylt)= e 2\/»
_.(O(WO(SB) a

2 2 /nfs

which, together with the generalized Einstein relation (7.6) and (7.11),
yields the following Alder—Wainwright effect:

) x 1 \/} -
1 0 R =YT R 0<
lim (Bnt)"® Rur(1) = 5= Ry0) (| PR e

(7.13)

Finally, we calculate the diffusion constant D, of X,. From the
generalized Einstein relation (7.7), (7.10), and (7.11), we get

Dy =

(fxwasa)zaz“ 1 <O‘W0‘ssa>2
Pspesn 2fsn €sB

and so by (5.15), (5.16), and (6.11)

Dy = Yo y/6mrn)? (7.14)
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8. CONVERGENCE TO ORNSTEIN-UHLENBECK
BROWNIAN MOTION

It is known in statistical physics''®’ that
a=3(1+2pe/p)~'"? (8.1)

where p, and p are the density of a Brownian particle and a fluid in the
Stokes—Boussinesq-Langevin equation (5.5), respectively. Furthermore, it
is also known that if p, is far bigger than p, that is, p is extremely small,
then a Brownian particle moves according to the Langevin equation
without delayed drift term.

In this section, we show that the processes Xy and X, have an
asymptotic behavior when a tends to zero for fixed # that is equivalent to
the limp — 0 behavior for fixed #, by noting (6.12).

By (5.8), we have

lim hg(&)=hymp, () forany ¢eR (82)
a—0 "

) 1 1 )
lhs(S)" < forany ¢eR (83)

[(2m)"2m]? B2, + &2

I Bgs+aPsp +(1¢1/2)'
2nm B+ &

0<Rehg(é) < forany (eR (84)

where f, is a positive constant given by

B, =6nrp/m (8.5)

Since it follows from (E.2) in Ref. 24, (5.17), and (6.1) that
Ry (1)=2(Re hg)" (1) (teR) (8.6)
we see from (8.2) and (8.4) that

1/2
lim RK(t):Rh_ﬂx(t):(zn)/ e~ Pl (1eR) (8.7)

a—0 ni

where o, 1s a positive constant given by
oo = [2(21)*(Boo/m) 12 (8.8)
On the other hand, since it follows from (H.4) in Ref. 24 and (7.3) that

Ry(t)y=ag(lhs|’)" (1) (teR) (8.9)
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we see from (8.2) and (8.8) that

/ 2
lim Ry (1)=R, .4 (,)_Me ol

lim TS (teR) (8.10)

We can conclude from (8.7} and (8.10) that

lim Xy =X, . in law (8.11)
a—0
lim X, = Xx g, in law (8.12)

a—0

In particular, we find that in order that Xy and X, have the same limit
process (the Ornstein-Uhlenbeck Brownian motion X, , ) as a tends to
zero, it is a necessary and sufficient condition that

= (12/21%2py) 12 (8.13)

It then follows from (7.14) that under condition (8.13) the diffusion
constant D, becomes

1

SR

(8.14)

which coincides with the diffusion constants Dy and D, o of the

processes Xy and X, , , given by (2.25) and (6.9), respectlvely
Next, we investigate the lim ¢ — 0 behavior of the value Cgy/fss In
relation (7.7). By (7.12), we have

Cep f Jal +1+af /a/[ 1— ) +a*y]dy
Bss N e (L4 y+aly) 'S0 = 1)+ ] dy

f(1+y+af -y 2Jrazy]“ldy

(1+y+ayy) " /[ =y) +aPy] dy

<ot a1/ =1 dy
I7 U+ y+ay/y) " /L=y +a’y] dy

and so, by letting a tend to zero, we have
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which, together with (8.10), implies that the generalized Einstein relation
(7.7) approaches the Einstein relation for the Ornstein—Uhlenbeck—
Brownian motion X, , .

Finally, we investigate the double limits t —» oo and a — 0 of the ratio
between the correlation functions Ry and R,,. From (8.7) and (8.10), we
immediately have

lim (Hm RW(”): 2
1~ o0 \a—0 Ry(1) 12\/5753/%7

On the other hand, we see from (7.11) and the Alder—Wainwright effect
(6.10) and (7.13) for the correlation functions Rx and R, that

lim RW(’): lim (Bsst)’? Ry (1)

e Rg(t)  i=o0 (Bsp?)™? Ry(1)
_, CanRul0)
Bss Rk (0)

and so, by (8.7), (8.10), and (8.15),

RW(”) _ Ay
6ﬁn3/2rn

Therefore, by (8.13), we have the following interesting limit theorem:

fim ( 1
a <,i“30 Re(0)

. . Ryl1)
=2 .16
3‘3%()1”30 RK(1)> (516)
. . RW(1)>
=1 8.17
jim (i 22 17
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